Parallel User Manual.

Synopsis:

There is a large push in the ASIC verification world to move away from running simulations on a few large (8+way) SMP Unix servers to running on many small (2-way) Linux servers. The potential cost savings are huge with little down side on reliability.

But there is the problem of smoothly running scores of simulations across potentially dozens of machines.  You are left with the choice of setting up and maintaining complicated software that may cut into your cost savings, or rolling you own batch scripts which takes time to develop.

Parallel is an attempt to give a verification engineer the ability to batch simulations across dozens of 'nix machines. It uses no deamon of its own, but instead relies on NFS, and either ssh or rsh to communicate with remote machines. Hopefully these tools are already installed and configured in your system.

It is a no-frills solution. There is some load-balancing abilities, but parallel is not very good at it. There is no attempt to integrate with any given simulator. No attempt is made to make it easier to suspend and then restart a simulation, but there is nothing to stop you from doing it manually.

But it does give you a simple way to setup and run a series of regression tests and report the status of them as they run. Its non-central design allows for many designers to have their own setup of their own tests with little overlap with other groups, or designers. The fact that it uses no deamon of its own makes it easier to setup and less likely that you will need to call the sys-admin at 3:00 in the morning. And best of all it is in (hopefully) well documented Perl code, so you can do whatever you want to it, and openly make fun of its author's poor coding and spelling abilities. 

More specific

Parallel was written to require the least from the systems it is used on. Likely you already have a parallel-ready system. The requirements are:

1. Some networked Unix-like computer systems.

2. Perl 5.8 or later. It should work with Perl 5.6, but I've never tried it.

3. A shared network file system (NFS). Parallel assumes all your tests are available through a network-mounted directory structure, and that the path to each test is consistent on each machine. In other words you cannot have the path to a specific test directory be /projects/test on one machine and /mnt/project/test on another. But you shouldn't be doing this anyway.

4. Ssh or rsh must be installed and ideally set up so that you do not have to enter your password going between the machines you will be using.

Running simulations on different machines with different operating systems and different software versions of key software packages on each machine has its own set of issues. Parallel does nothing to eliminate these issues. It assumes the machines, at least from a user standpoint, are functionally equivalent. Having different simulators, or versions of make, Perl, bash, tcsh, or inconsistent directory structure will adversely affect your success. In general it is a good practice to make all your *nix machines configured as near identical as possible.

Getting Started Fast:

Lets run through a simple example. Lets say we have three machines named wilma, fred, and dino and our directory structure looks like this an all the machines:

/

     mnt/

          project_x/

               tests/

                    test_1

                    test_2

                    test_x ...

                hdl/

                test_bench_code/

Where /mnt/project_x is a network mounted directory and all three of our machines have it mounted in the same place “/mnt/project_x/”. 

To run a test, you simply need to cd to the test directory (cd /mnt/project_x/tests/test1/ ) and type “make run”.

Step 1.

The first thing we need to do is make a “parallel_dir_list” file. It needs to go someplace all three machines can see it. For this example we'll put it in the /mnt/project_x directory. The parallel_dir_list file is a list of valid perl lines that specify what parallel will do, and where it will be done.

The values parallel understands are:

· $dir = “”

· $name = “”

· $pre_action = “”

· $post_action = “”

· $action = “”

· $comment = “”

None of these are required, but SOMETHING is required. Blank lines and comments (# perl-style comments) are ignored. The default directory is “.”, and the default action is “sleep 1” unless you change it through the command line. I suggest always having a $name variable. At least one of the above values are required for each simulation, it doesn't matter which one.

Here is our example parallel_dir_list file:

# Run all our tests. 

$dir = “tests/test1”; $action = “make run”; $name = “Test 1”

$dir = “tests/test2”; $action = “make run”; $name = “Test 2”

$dir = “tests/test3”; $action = “make run”; $name = “Test 3”

$dir = “tests/test4”; $action = “make run”; $name = “Test 4”

$dir = “tests/test5”; $action = “make run”; $name = “Test 5”

$dir = “tests/test6”; $action = “make run”; $name = “Test 6”

Relative paths are okay as long as you run parallel where the relative paths are valid. If you ran parallel on the above dir_list in your home directory, you may have problems since ~/tests/testX may not be there. By default the file is \n separated, meaning each line is a different simulation run. (You can change this though, see the section on “Other Useful Stuff” below.)

Save the above as “parallel_dir_list” in the /mnt/project_x directory.

Step 2.

Make sure parallel is in your path on all target machines. This MUST be done from your setup script (.cshrc or .bashrc or whatever).

From the /mnt/project_x directory run the following command: (Assuming no special environment variables need to be set)

parallel -t wilma,1:fred,1:dino,2 [--rsh]

Use the --rsh option if you have rsh and not ssh setup.

This tells parallel to run one simulation on both fred and wilma, and run two concurrent simulations on dino.

Hopefully you don't see any error messages. ;)

Parallel will ssh/rsh to each target machine, cd to the directory where you started parallel from, and run parallel in local_mode.

These remove parallels will each take entries from the dir_list file and run what is specified there. When that simulation is finished the remote parallel processes will continue to get lines from the dir_list file until everything is done.

If we had typed this command instead:

parallel -t dino:6

Parallel would have run all six of our simulations on dino concurrently.

Lock files are used to ensure that there is no contention on the dir_list file.

Step 3.

From another term window, run parallel_status from the /mnt/project_x directory. You should see your simulations status. As they are run they go from QUEUED to RUNNING to DONE. And if you write a checking script for your simulation you could even report PASS/FAIL status.

You may have to make your window very wide. There is a lot of information displayed by the parallel_status script.

By default, only one copy of parallel can be run in any given directory. See -f and -m in the options section.

Other useful stuff.

Instead of having one dir_list in a given directory, you can name the dir_list files anything and use the -f option to load from a specific file. This is useful for having specific regression suites for specific modules or features archived. 

You can override the actions specified in the dir_list file by using the -a/-c/-s (action, check, setup) options along with the -o (override) option.

The --env option is useful in setting environmental variables on the remote machine.

Parallel by default creates a directory called .parallel_lock in the directory where you ran it. By using the -l option, or by setting the PARALLEL_LOCK_DIR environmental variable, you can set this to be anywhere, and any name. This directory MUST be on a networked drive in a place where all machines can get to it.

When you kill parallel (kill or CTRL-c) it tries to make sure all the remote processes are killed with it. Because of this parallel may take several seconds to stop. If you kill it with a -9 or otherwise interrupt this sequence, the children processes on the remote machine will still be running simulations. You can try to use the parallel_kill script, but if that does no kill them, it's all up to you to manually do it. I suggest you just CTRL-c (once) to kill parallel.

The dir_list file has a way to override the end-of-line sequence. By default this is set to “\n” so that each line of the file defines one process to run. By adding a “$/ = ????” line as the first line (And I do mean FIRST line) you can change this to just about anything. This could greatly improve the readability of your dir_list file. The dir_list file from the example above could be written as:

$/ = “-----”; # Must be the FIRST line.

# Run all our tests. 

$dir = “tests/test1”;

$action = “make run”; 

$name = “Test 1”;

-----

$dir = “tests/test2”; 

$action = “make run”; 

$name = “Test 2”;

-----

$dir = “tests/test3”; 

$action = “make run”; 

$name = “Test 3”;

-----

$dir = “tests/test4”; 

$action = “make run”; 

$name = “Test 4”;

-----

$dir = “tests/test5”; 

$action = “make run”; 

$name = “Test 5”;

-----

$dir = “tests/test6”; 

$action = “make run”; 

$name = “Test 6”;

-----

Parallel Options:

-f --dir_list_file = ARG
Used to set the name of the dir_list file. Defaults to “parallel_dir_list”.

-t --target = ARG
Specify the target machines and how many processes to run on each of them. The format is pairs of machine name/number of process separated by a colon (“:”) or comma (“,”). The , and semicolon are interchangeable. (dino,5:wilma:5,fred,5). No default.

--load = ARG
Specify the Maximum load allowed for starting new processes. If the load gets to be above the value you specified, parallel will wait before starting new simulations. The format is pairs of machine name/number of process separated by a colon (“:”) or comma (“,”). The , and semicolon are interchangeable. (dino,5:wilma:5,fred,5). No default. Somewhat Experimental.

-h
Short help.

--help
Long help.

-a --default_action = ARG
Set the default action. . Only takes effect when no action is specified in the dir_list file, or when -o ( --override) is used. Default is “sleep 1”.

-s --pre_action = ARG
Set the default setup or pre-action command. Only takes effect when no pre-action is specified in the dir_list file, or when -o (--override) is used. No default.

-c --post_action = ARG
Set the default checking or post-action command. Only takes effect when no post-action is specified in the dir_list file, or when -o (--override) is used. No Default.

-e --copy_env
When set, parallel will copy the environmental variables to the .ssh/environment file in your home directory before launching parallels on the target machines. Effectively making the environmental variables the same on the target machines. (Provided your home directory is mounted to be the same on all machines.)

-p --progress_file = ARG
Specify the name of the file where parallel stores information about the running processes. Defaults to parallel_status_file. THIS VARIABLE SHOULD CONTAIN NO PATH INFORMATION.

-o --overide_command 
Overide the values of $action, $pre_action, and $post_action with default value.

-b --max_backoff_delay = ARG
Maximum delay in lock file arbitration. Defaults to 15 seconds.

-n --nfs_delay = ARG
Delay to wait for the network to reflect your changes before taking action. This value should be at least 2x the time it takes a file change to propagate through the network. The slower your network the larger this value should be. Defaults to 4 seconds.

-d --debug
Print out a lot of annoying messages as you run.

-l --lock_dir = ARG
The name of the dir where parallel stores it's working files. Defaults to ./parallel_lock.

-i --start_delay = ARG
In an attempt to keep all the processes you started from trying to access the same shared resources at the same time, parallel waits start_delay seconds between starting new simulations on startup. Setting this to zero will force all the simulations into arbitration right away, and greatly increase the amount of time before all your simulation threads to start. Defaults to 2 Seconds.

-m --multiple_status
Use this option when you want to run multiple parallel commands in the same directory at the same time. By default the status file is called parallel_status_file. When using this option the status file is called parallel_status_file_MACHINE_NAME_PID. Be warned, I make no attempt to keep track of these, it is all up to you to figure out which is which.

--run = ARG
Run a command in the current directory on a remote machine. ARG is of the form: machine:”Command”. No attempt is made at checking, or keeping status. Exampe: parallel--run dino:”top -b”.

--source_pid = ARG
Used by childern parallel process' to know the pid of the parallel process that called it. Should not be used directly.

--source_host = ARG
Used by childern parallel processes' to know the source machine name of the calling parallel process. Should not be used directly.

--local_threads = ARG
Run parallel in local mode. Should not be used directly.

Customizations.

Custom Checking.

Parallel allows you to run a checking script (post_action) after your simulation runs. The main purpose of this feature is to run a script that checks the output of your simulation and updates parallel's built in reporting system. Namely it is so you can get pass/fail status on your simulation.

To run a check script you must either specify it in the dir_list file by using the $post_action variable, or set the default post_action with the -c option.

Now, since I have no idea what your system is or how to check for pass/fail, you will have to write this yourself. And to do that you need to know how the parallel_status_file works. 

The parallel status file is maintained in the parallel_lock dir. By default this is ./parallel_lock/parallel_status_file. Like the dir_list file, this file is simply a collection of perl interpretable lines that set various variables.

Valid parallel_status_file variables:

$name, $dir, $date, $machine, $pid, $status, $pre_action, $post_action, $action

When parallel calls the post_action script it passes the script several things. It passes the source directory (where parallel was called), the action command of the simulation that has just run, the directory where the test was run, the name of the simulation, the name of the lock_dir, and the name of the progress file.

The checking script needs all this information so that it can correctly find the parallel_status file and update it with values that will associate it correctly with the simulation.

Here is an example piece of perl code that will get the options correctly for you:

use Getopt::Long

sub setup(){

  #default files.

  $_lock_dir = ".parallel_lock";

  $_debug = 0;

  $_progress_file = "parallel_status_file";

  $_action = "";

  $_dir = "";

  $_source_dir = ".";

  $_name = "";

  $_nfs_delay = 4;

  GetOptions( # user-level options.

             'source_dir=s'=> \$_source_dir,

             'd|debug' =>     \$_debug,

             'action=s' =>    \$_action,

             'dir=s' =>       \$_dir,

             'name=s' =>      \$_name,

             'l|lock_dir=s' => \$_lock_dir,

             '-p|progress_file=s' => \$_progress_file);

}

To use the parallel_status script and actually get good information out of it you need a way to uniquely identify all the different simulations. I have tried to make as few assumptions about how you have organized your tests as possible. You can uniquely identify your tests through the $name, $dir, or $action fields specified in the dir_list file. 

Once you know the pass/fail status of your simulation (I leave this to you as an exercise) you write our a line to the parallel_status_file. You should at least include the key values (Name, dir, and action) and the status.

Here is a snippet of code:

  open STATUS ,">>$_source_dir/$_lock_dir/$_progress_file"

    or die "Check script can't open file”.


$_source_dir/$_lock_dir/$_progress_file $!";

  print STATUS "\$action = \"$_action\" ; ",

    "\$dir = \"$_dir\" ;",

    "\$name = \"$_name\" ;",

    "\$status = \"$my_status\" ;\n" ;

 This will put the pass/fail status in the status file.

